Identifying passivated dynamic force microscopy tips on H:Si(100)

S. Jarvis1 P. Sharp1 R. Woolley1 A. Sweetman1 L. Kantorovich2 P. Moriarty1

1School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, U.K.
2Department of Physics, King’s College London, The Strand, London, WC2R 2LS, U.K.

The Si(100)[1] surface is a particularly attractive system for the study of single atom/molecule chemistry. When terminated with a passivating layer of hydrogen (Si(100):H), isolated chemically reactive sites can be fabricated by removing a single hydrogen atom allowing interactions to be studied within a unique environment. Particularly interesting information can be obtained via the technique of nc-AFM, which allows the forces and energy of interaction to be measured between molecules and surfaces. Although well studied in STM, thus far only a single nc-AFM image of the Si(100):H surface has been published[2]. We will discuss a nc-AFM study of the Si(100):H surface[3] which elucidates the different force interactions responsible for image contrast. In particular, we observe an inverted imaging contrast thought to originate from atomically repulsive force interactions. Force-distance spectroscopy will also be presented and compared with the results of density functional theory simulations. From these comparisons we provide key insights into the characterisation of the tip-sample system, which may have important consequences for molecular imaging as well as for the fabrication of single chemically reactive sites.

3 Sharp et al., \textit{Appl. Phys. Lett.} In submission (2012).